Tribhuvan University # Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology Course Title: Digital LogicFull Marks: 60 + 20 + 20Course No.: CSC111Pass Marks: 24 + 8 + 8 Nature of the Course: Theory + Lab Credit Hrs: 3 **Semester:** I **Course Description:** This course covers the concepts of digital logic and switching networks. The course includes the fundamental concepts of boolean algebra and its application for circuit analysis, multilevel gates networks, flip-lops, counters logic devices and synchronous and asynchronous sequential logic and digital integrated circuits. Course Objectives: The main objective of this course is to introduce the basic tools for the design of digital circuits and introducing methods and procedures suitable for a variety of digital design applications. #### **Course Contents:** | Units | Topics | Hours | Remarks | |---|--|-----------|-----------------| | 1. Binary systems | Digital systems Digital and analog system Block diagram of digital computer advantage/disadvantages of digital system Binary Numbers Number system (binary, decimal, octal, hexadecimal), importance of number system Number base conversion (binary to decimal, octal & hexadecimal and viceversa etc.) Complements- r's, (r-1)'s Complement methods of addition/subtraction (r's & (r-1)'s) Binary Systems | Hours 1 4 | Remarks 6 hours | | 2.
Boolean
algebra and
Logic Gates | BCD codes, error-detection codes, reflected code, alphanumeric codes (ASCII, EBCDIC) Basic definition of Boolean Algebra Introduction Common postulates Basic Theory of Boolean Algebra | 1 | 5 hours | | | Duality theoremBasic theoremsDe-Morgans theorem | | | | | 3. Boolean Function | 1 | | |----------------|--|---|---------| | | Boolean function and truth table | | | | | Algebraic manipulation and simplification | | | | | of Boolean function | | | | | Complement of a function | | | | | Logic operations and Logic gates | | | | | Logic circuit, AND, OR, NOT operation | | | | | Logic Gates: Basic gates, universal gates, | | | | | Ex-OR, Ex-NOR Buffer | | | | | Implementation of Boolean function using | | | | | gates | | | | | 4. Logic operations and Logic gates | 2 | • | | | Logic circuit, AND, OR, NOT operation | | | | | Logic gates: Basic gates, Universal gates, | | | | | Ex-OR, Ex-NOR, Buffer | | | | | Implementation of Boolean function using | | | | | gates | | | | | <i>6</i> | 2 | - | | | 5. Integrated Circuits | | | | | Concept of DIP, SIMM, linear and digital | | | | | ICs | | | | | • RTL, TTL, MOS, CMOS, I ² L | | | | | Positive and Negative Logic | | | | | Special Characteristics | | | | | Characteristics of IC logic Families | | | | 3. | 1. SOP and POS | 2 | 5 hours | | Simplification | • SOP, POS, min-term, max-term, standard | 2 | 3 nours | | of Boolean | and canonical form | | | | Functions | Simplification of SOP and POS function | | | | | using Boolean algebra | | | | | 2. K-map | 2 | - | | | Importance of k-map | _ | | | | Simplification of SOP and POS form | | | | | 2 and 3 variable k-map | | | | | 4 variable k-map | | | | | Don't care combination | | | | | 3. NAND and NOR implementation | 1 | - | | | NAND and NOR conversion | 1 | | | | Rules for NAND and NOR implementation | | | | | Implementation of SOP and POS logic | | | | | expressions using NAND, NOR and basic | | | | | gates | | | | 4. | 1. Design Procedure | 1 | 5 hours | | Combinational | Design Flocedure Definition of combinational logic circuit | 1 | 3 Hours | | Logic | Design procedure | | | | Logic | Besign procedure Realization / Implementation | | | | | | 1 | - | | | 2. Adders/Sub-tractors | 1 | | | | Half Adder - definition, truth table, logic diagram implementation | | | | | diagram, implementation | | | | | • Full Adder - definition, truth table, logic | | | |----------------|--|-----|---------| | | diagram, implementation | | | | | Half sub-tractor | | | | | • Full sub-tractor | 1 | - | | | 3. Code Conversion | 1 | | | | • General Concept | | | | | Code conversion – BCD to Excess-3 A polygic Proceedure | 1 | - | | | 4. Analysis Procedure | 1 | | | | • General concept | | | | | Steps in analysis Obtaining Realess functions from logic | | | | | Obtaining Boolean functions from logic diagram | | | | | Obtaining truth table from logic diagram | | _ | | | 5. NAND, NOR, Ex-OR circuits | 1 | | | | Concept of multi-level NAND and NOR circuits | | | | | Implementation of basic operations using universal gates | | | | | Block diagram method of Boolean function | | | | | implementation | | | | | • Realization of Ex-OR using basic gates and | | | | | universal gates | | | | | Parity generator, Parity checker | | | | 5. | 1. Adders | 1 | 8 hours | | Combinational | 4-bit parallel binary adder | | | | Logic with MSI | Decimal Adder – BCD Adder | | _ | | and LSI | 2. Magnitude Comparator | 2 | | | | Definition | | | | | 4-bit Magnitude Comparator | | | | | 3. Decoder | | | | | Definition of Encoder and Decoder | | | | | • 3-to-8 line decoder | 1 | _ | | | 4. Multiplexers | 1 | | | | Meaning of multiplexing and demultiplexing | | | | | 4-to-1 line multiplexer | | | | | 5. Read-Only-Memory (ROM) | 1 | | | | Types of ROM | 1 | | | | Combinational logic implementation of | | | | | ROM | | | | | 6. Programmable Logic Array (PLA) | 1.5 | 1 | | | Difference between ROM and PLA | 1.0 | | | | Block diagram of PLA | | | | | PLA Program Table | | | | | Implementation of PLA | | | | | 7. Programmable Array Logic (PAL) | 1.5 | 1 | | | PAL programming table | | | | | • Circuit design | | | | | | | | | i | | 1 | | | | 1 Elia Elia | 2 | 101 | |---------------|--|---|----------| | 6. | 1. Flip-Flop | 3 | 10 hours | | Synchronous | Definition of sequential circuit | | | | and | RS flip-flop, clocked RS FF | | | | Asynchronous | D flip-flop, J-K flip-flop, T flip-flop, J-K | | | | Sequential | Master Slave flip-flop | | | | Logic | 2. Triggering of flip-flop | 2 | | | | • Clock pulse | | | | | Positive and negative edge triggering | | | | | | | | | | Clocked J-K FF, edge triggered D FF | | | | | Direct inputs | | | | | 3. Design with state equations and state reduction | 3 | | | | table | | | | | State table | | | | | State diagram | | | | | State equation | | | | | State reduction and assignment | | | | | 4. Design procedure | | | | | Design procedure of sequential circuits | | | | | 5. Introduction to Asynchronous circuits | 2 | | | | Basic definition | | | | | | | | | | • Difference between Synchronous and | | | | | Asynchronous circuit | | | | | State table | | | | | State diagram | | | | | State equation | | | | | Circuits with latches. | | | | İ | CIT OF THE TANGETON | | | | | CITCHIO HIM IMPIRO | | | | 7. | | 1 | 6 hours | | | 1. Registers | 1 | 6 hours | | Registers and | Registers Introduction to register | 1 | 6 hours | | | 1. Registers • Introduction to register • Shift registers – serial-in serial-out, | 1 | 6 hours | | Registers and | 1. Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel- | 1 | 6 hours | | Registers and | 1. Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters | 3 | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter | | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences | 3 | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter Timing sequences Word time generation | 3 | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter Timing sequences Word time generation Timing signals | 3 | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter Timing sequences Word time generation Timing signals Johnson's counter | 3 | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences Word time generation Timing signals Johnson's counter Memory Unit | 3 | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences Word time generation Timing signals Johnson's counter Memory Unit Introduction to memory unit | 3 | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences Word time generation Timing signals Johnson's counter Memory Unit Introduction to memory unit Block diagram | 3 | 6 hours | | Registers and | Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences Word time generation Timing signals Johnson's counter Memory Unit Introduction to memory unit | 3 | 6 hours | | Integrated circuit memory | | | |---------------------------|--|--| | | | | | | | | | | | | #### **Text Books:** 1. M. Morris Mano, "Digital Logic & Computer Design" #### **Reference Books:** - 1. Brain Holdsworth, "Digital Logic Design", Elsevier Science. - 2. John Patrick Hayes, "Introduction to Digital Logic Design", Addison-Wesley. - 3. M. Morris Mano and Charles Kime, "Logic and Computer Design Fundamentals", Pearson New International. # **Laboratory works:** Introduction to logic gates with IC pin details and verify the truth table using bread board. - 1. Use any one simulator to simulate the basic logic circuits functions. - 2. Design of half adder, full adder, subtractor using basic logic gates. - 3. Study and verification of 3-8 decoder using IC. - 4. Study and verification of 8-3 encoder using IC - 5. Implementation of 4-1 Mux using IC - 6. Implementation of 1-4 DeMux using IC - 7. Implementation of 7 Segment Display - 8. Verification of Flip flop - 9. Design and verification of Up counter/Down counter - 10. Design and verification of Shift Register ## **Required devices:** - 1. Bread board - 2. Multimeters - 3. IC's/Logic Gates #### **Model Question:** #### **Group A (Long Answer Question Section)** #### Attempt any TWO questions. (2x10=20) - 1. Implement the following function $F=\Sigma(0,1,3,4,7)$ using - a) Decoder - b) Multiplexer - c) PLA - 2. Differentiate between synchronous and asynchronous sequential circuit. Design a counter as shown in the state diagram below 3. Explain different types of shift registers with necessary diagrams. #### **Group B (Short Answer Question Section)** ## Attempt any EIGHT questions. (8x5=40) - 4. Convert (2AC5)16 to decimal, octal and binary. - 5. What do you mean by encoder? Design 3 to 8 line encoder. - 6. Design a combinational circuit that multiplies 2-bit numbers, a1a0 and b1b0 to produce a 4-bit product, c3c2c1c0. Use AND gates and half-adders. - 7. Design a circuit which produces 2's complement of the given four bit binary digit. - 8. Implement full adder using decoder with truth table and logic diagram. - 9. Design a circuit that produces the square of three bit number using ROM? - 10. Use K-map to simplify the given function in POS. Implement the simplified function using 2-input NOR-NOR gate only. $$F = \prod M (0,1,2,9,10,11,14)$$ And with don't care conditions $$D = \prod M (7,8,12)$$ - 11. Discuss race condition in J-K Flip flop and methods to overcome it. - 12. Write Short notes on (Any two) - a) Coding system in logic design - b) Error-detection code - c) Universal Gates