Tribhuvan University

Institute of Science and Technology Bachelor of Science in Computer Science and Information Technology

Course Title: Digital LogicFull Marks: 60 + 20 + 20Course No.: CSC111Pass Marks: 24 + 8 + 8

Nature of the Course: Theory + Lab Credit Hrs: 3

Semester: I

Course Description: This course covers the concepts of digital logic and switching networks. The course includes the fundamental concepts of boolean algebra and its application for circuit analysis, multilevel gates networks, flip-lops, counters logic devices and synchronous and asynchronous sequential logic and digital integrated circuits.

Course Objectives: The main objective of this course is to introduce the basic tools for the design of digital circuits and introducing methods and procedures suitable for a variety of digital design applications.

Course Contents:

Units	Topics	Hours	Remarks
1. Binary systems	 Digital systems Digital and analog system Block diagram of digital computer advantage/disadvantages of digital system Binary Numbers Number system (binary, decimal, octal, hexadecimal), importance of number system Number base conversion (binary to decimal, octal & hexadecimal and viceversa etc.) Complements- r's, (r-1)'s Complement methods of addition/subtraction (r's & (r-1)'s) Binary Systems 	Hours 1 4	Remarks 6 hours
2. Boolean algebra and Logic Gates	 BCD codes, error-detection codes, reflected code, alphanumeric codes (ASCII, EBCDIC) Basic definition of Boolean Algebra Introduction Common postulates Basic Theory of Boolean Algebra 	1	5 hours
	Duality theoremBasic theoremsDe-Morgans theorem		

	3. Boolean Function	1	
	 Boolean function and truth table 		
	 Algebraic manipulation and simplification 		
	of Boolean function		
	 Complement of a function 		
	 Logic operations and Logic gates 		
	 Logic circuit, AND, OR, NOT operation 		
	 Logic Gates: Basic gates, universal gates, 		
	Ex-OR, Ex-NOR Buffer		
	 Implementation of Boolean function using 		
	gates		
	4. Logic operations and Logic gates	2	•
	 Logic circuit, AND, OR, NOT operation 		
	 Logic gates: Basic gates, Universal gates, 		
	Ex-OR, Ex-NOR, Buffer		
	 Implementation of Boolean function using 		
	gates		
	<i>6</i>	2	-
	5. Integrated Circuits		
	 Concept of DIP, SIMM, linear and digital 		
	ICs		
	• RTL, TTL, MOS, CMOS, I ² L		
	 Positive and Negative Logic 		
	Special Characteristics		
	 Characteristics of IC logic Families 		
3.	1. SOP and POS	2	5 hours
Simplification	• SOP, POS, min-term, max-term, standard	2	3 nours
of Boolean	and canonical form		
Functions	 Simplification of SOP and POS function 		
	using Boolean algebra		
	2. K-map	2	-
	Importance of k-map	_	
	 Simplification of SOP and POS form 		
	 2 and 3 variable k-map 		
	4 variable k-map		
	Don't care combination		
	3. NAND and NOR implementation	1	-
	NAND and NOR conversion	1	
	 Rules for NAND and NOR implementation 		
	 Implementation of SOP and POS logic 		
	expressions using NAND, NOR and basic		
	gates		
4.	1. Design Procedure	1	5 hours
Combinational	Design Flocedure Definition of combinational logic circuit	1	3 Hours
Logic	 Design procedure 		
Logic	 Besign procedure Realization / Implementation 		
		1	-
	2. Adders/Sub-tractors	1	
	Half Adder - definition, truth table, logic diagram implementation		
	diagram, implementation		

	• Full Adder - definition, truth table, logic		
	diagram, implementation		
	Half sub-tractor		
	• Full sub-tractor	1	-
	3. Code Conversion	1	
	• General Concept		
	Code conversion – BCD to Excess-3 A polygic Proceedure	1	-
	4. Analysis Procedure	1	
	• General concept		
	Steps in analysis Obtaining Realess functions from logic		
	 Obtaining Boolean functions from logic diagram 		
	Obtaining truth table from logic diagram		_
	5. NAND, NOR, Ex-OR circuits	1	
	 Concept of multi-level NAND and NOR circuits 		
	 Implementation of basic operations using universal gates 		
	Block diagram method of Boolean function		
	implementation		
	• Realization of Ex-OR using basic gates and		
	universal gates		
	 Parity generator, Parity checker 		
5.	1. Adders	1	8 hours
Combinational	 4-bit parallel binary adder 		
Logic with MSI	 Decimal Adder – BCD Adder 		_
and LSI	2. Magnitude Comparator	2	
	 Definition 		
	4-bit Magnitude Comparator		
	3. Decoder		
	Definition of Encoder and Decoder		
	• 3-to-8 line decoder	1	_
	4. Multiplexers	1	
	 Meaning of multiplexing and demultiplexing 		
	4-to-1 line multiplexer		
	5. Read-Only-Memory (ROM)	1	
	Types of ROM	1	
	 Combinational logic implementation of 		
	ROM		
	6. Programmable Logic Array (PLA)	1.5	1
	Difference between ROM and PLA	1.0	
	Block diagram of PLA		
	 PLA Program Table 		
	 Implementation of PLA 		
	7. Programmable Array Logic (PAL)	1.5	1
	PAL programming table		
	• Circuit design		
i		1	

	1 Elia Elia	2	101
6.	1. Flip-Flop	3	10 hours
Synchronous	 Definition of sequential circuit 		
and	 RS flip-flop, clocked RS FF 		
Asynchronous	 D flip-flop, J-K flip-flop, T flip-flop, J-K 		
Sequential	Master Slave flip-flop		
Logic	2. Triggering of flip-flop	2	
	• Clock pulse		
	 Positive and negative edge triggering 		
	 Clocked J-K FF, edge triggered D FF 		
	Direct inputs		
	3. Design with state equations and state reduction	3	
	table		
	 State table 		
	 State diagram 		
	 State equation 		
	 State reduction and assignment 		
	4. Design procedure		
	Design procedure of sequential circuits		
	5. Introduction to Asynchronous circuits	2	
	Basic definition		
	• Difference between Synchronous and		
	Asynchronous circuit		
	State table		
	 State diagram 		
	 State equation 		
	 Circuits with latches. 		
İ	CIT OF THE TANGETON		
	CITCHIO HIM IMPIRO		
7.		1	6 hours
	1. Registers	1	6 hours
Registers and	Registers Introduction to register	1	6 hours
	 1. Registers • Introduction to register • Shift registers – serial-in serial-out, 	1	6 hours
Registers and	 1. Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel- 	1	6 hours
Registers and	 1. Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters 	3	6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter 		6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences 	3	6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter Timing sequences Word time generation 	3	6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter Timing sequences Word time generation Timing signals 	3	6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter Timing sequences Word time generation Timing signals Johnson's counter 	3	6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences Word time generation Timing signals Johnson's counter Memory Unit 	3	6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences Word time generation Timing signals Johnson's counter Memory Unit Introduction to memory unit 	3	6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences Word time generation Timing signals Johnson's counter Memory Unit Introduction to memory unit Block diagram 	3	6 hours
Registers and	 Registers Introduction to register Shift registers – serial-in serial-out, parallel-in parallel-out, serial-in parallel-out, parallel-in serial-out Ripple Counters Definition of counter, ripple and synchronous counter Asynchronous counter – BCD ripple counter, Binary ripple counter Synchronous Counters Binary counter Binary up/down counter BCD counter Timing sequences Word time generation Timing signals Johnson's counter Memory Unit Introduction to memory unit 	3	6 hours

Integrated circuit memory		

Text Books:

1. M. Morris Mano, "Digital Logic & Computer Design"

Reference Books:

- 1. Brain Holdsworth, "Digital Logic Design", Elsevier Science.
- 2. John Patrick Hayes, "Introduction to Digital Logic Design", Addison-Wesley.
- 3. M. Morris Mano and Charles Kime, "Logic and Computer Design Fundamentals", Pearson New International.

Laboratory works:

Introduction to logic gates with IC pin details and verify the truth table using bread board.

- 1. Use any one simulator to simulate the basic logic circuits functions.
- 2. Design of half adder, full adder, subtractor using basic logic gates.
- 3. Study and verification of 3-8 decoder using IC.
- 4. Study and verification of 8-3 encoder using IC
- 5. Implementation of 4-1 Mux using IC
- 6. Implementation of 1-4 DeMux using IC
- 7. Implementation of 7 Segment Display
- 8. Verification of Flip flop
- 9. Design and verification of Up counter/Down counter
- 10. Design and verification of Shift Register

Required devices:

- 1. Bread board
- 2. Multimeters
- 3. IC's/Logic Gates

Model Question:

Group A (Long Answer Question Section)

Attempt any TWO questions.

(2x10=20)

- 1. Implement the following function $F=\Sigma(0,1,3,4,7)$ using
 - a) Decoder
 - b) Multiplexer
 - c) PLA
- 2. Differentiate between synchronous and asynchronous sequential circuit. Design a counter as shown in the state diagram below

3. Explain different types of shift registers with necessary diagrams.

Group B (Short Answer Question Section)

Attempt any EIGHT questions.

(8x5=40)

- 4. Convert (2AC5)16 to decimal, octal and binary.
- 5. What do you mean by encoder? Design 3 to 8 line encoder.
- 6. Design a combinational circuit that multiplies 2-bit numbers, a1a0 and b1b0 to produce a 4-bit product, c3c2c1c0. Use AND gates and half-adders.
- 7. Design a circuit which produces 2's complement of the given four bit binary digit.
- 8. Implement full adder using decoder with truth table and logic diagram.
- 9. Design a circuit that produces the square of three bit number using ROM?
- 10. Use K-map to simplify the given function in POS. Implement the simplified function using 2-input NOR-NOR gate only.

$$F = \prod M (0,1,2,9,10,11,14)$$
 And with don't care conditions
$$D = \prod M (7,8,12)$$

- 11. Discuss race condition in J-K Flip flop and methods to overcome it.
- 12. Write Short notes on (Any two)
 - a) Coding system in logic design
 - b) Error-detection code
 - c) Universal Gates