Design and Analysis of Algorithms

Course Title: Design and Analysis of Algorithms
Course No: CSC314
Nature of the Course: Theory + Lab
Semester: V

Nature of the Course: This course introduces basic elements of the design and analysis of computer algorithms. Topics include asymptotic notations and analysis, divide and conquer strategy, greedy methods, dynamic programming, basic graph algorithms, NP-completeness, and approximation algorithms. For each topic, beside in-depth coverage, one or more representative problems and their algorithms shall be discussed.

Course Objectives:
- Analyze the asymptotic performance of algorithms.
- Demonstrate a familiarity with major algorithm design techniques
- Apply important algorithmic design paradigms and methods of analysis.
- Solve simple to moderately difficult algorithmic problems arising in applications.
- Able to demonstrate the hardness of simple NP-complete problems

Course Contents:

Unit 1: Foundation of Algorithm Analysis (4)
1.1. Algorithm and its properties, RAM model, Time and Space Complexity, detailed analysis of algorithms (Like factorial algorithm), Concept of Aggregate Analysis
1.2. Asymptotic Notations: Big-O, Big-Ω and Big-Θ Notations their Geometrical Interpretation and Examples.
1.3. Recurrences: Recursive Algorithms and Recurrence Relations, Solving Recurrences (Recursion Tree Method, Substitution Method, Application of Masters Theorem)

Unit 2: Iterative Algorithms (4)
2.1. Basic Algorithms: Algorithm for GCD, Fibonacci Number and analysis of their time and space complexity
2.2. Searching Algorithms: Sequential Search and its analysis
2.3. Sorting Algorithms: Bubble, Selection, and Insertion Sort and their Analysis

Unit 3: Divide and Conquer Algorithms (8)
3.1. Searching Algorithms: Binary Search, Min-Max Finding and their Analysis
3.2. Sorting Algorithms: Merge Sort and Analysis, Quick Sort and Analysis (Best Case, Worst Case and Average Case), Heap Sort (Heapify, Build Heap and Heap Sort Algorithms and their Analysis), Randomized Quick sort and its Analysis
3.3. Order Statistics: Selection in Expected Linear Time, Selection in Worst Case Linear Time and their Analysis

Unit 4: Greedy Algorithms (6)
4.2. Greedy Algorithms: Fractional Knapsack, Job sequencing with Deadlines, Kruskal’s Algorithm, Prims Algorithm, Dijkstra’s Algorithm and their Analysis
4.3. Huffman Coding: Purpose of Huffman Coding, Prefix Codes, Huffman Coding Algorithm and its Analysis
Unit 5: Dynamic Programming (8)
5.3. Memoization Strategy, Dynamic Programming vs Memoization

Unit 6: Backtracking (5)
6.1. Concept of Backtracking, Recursion vs Backtracking

Unit 7: Number Theoretic Algorithms (5)
7.1. Number Theoretic Notations, Euclid’s and Extended Euclid’s Algorithms and their Analysis.
7.2. Solving Modular Linear Equations, Chinese Remainder Theorem, Primility Testing: Miller-Rabin Randomized Primility Test and their Analysis

Unit 8: NP Completeness (5)
8.1. Tractable and Intractable Problems, Concept of Polynomial Time and Super Polynomial Time Complexity
8.2. Complexity Classes: P, NP, NP-Hard and NP-Complete
8.3. NP Complete Problems, NP Completeness and Reducibility, Cooks Theorem, Proofs of NP Completeness (CNF-SAT, Vertex Cover and Subset Sum)
8.4. Approximation Algorithms: Concept, Vertex Cover Problem, Subset Sum Problem

Laboratory Work:
This course can be learnt in effective way only if we give focus is given in practical aspects of algorithms and techniques discussed in class. Therefore student should be able to implement the algorithms and analyze their behavior. Students should:

- Implement comparison sorting algorithms and perform their empirical analysis.
- Implement divide-and-conquer sorting algorithms and perform their empirical analysis.
- Implement algorithms for order statistics and perform their empirical analysis.
- Implement algorithms by using Greedy, DP and backtracking paradigm
- Implement NP-complete problems and realize their hardness.

Recommended Books:
Course Title: System Analysis and Design
Course No: CSC315
Nature of the Course: Theory + Lab
Semester: V

Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8
Credit Hrs: 3

Course Description: This course familiarizes students with the concepts of information systems development including systems development life cycle, different approaches to systems development, project management, planning, analysis, design, implementation and maintenance. This course also covers some fundamental concepts of object oriented systems analysis and design.

Course Objectives: The main objective of this course is to provide knowledge of different concepts of system analysis and design so that students will be able to develop information systems using different methodologies, tools, techniques, and approaches.

Course Contents:
Unit 1: Foundations for Systems Development (10 Hrs.)
1.2. Other Approaches: Prototyping; Spiral; Rapid Application Development; Introduction to Agile Development
1.3. Managing the Information Systems Project: Introduction; Managing the Information Systems Project; Representing and Scheduling Project Plans; Using Project Management Software

Unit 2: Planning (5 Hrs.)
2.1. Identifying and Selecting Systems Development Projects: Introduction; Identifying and Selecting Systems Development Projects; Corporate and Information Systems Planning
2.2. Initiating and Planning Systems Development Projects: Introduction; Initiating and Planning Systems Development Projects; Process of Initiating and Planning IS Development Projects, Assessing Project Feasibility; Building and Reviewing the Baseline Project Plan

Unit 3: Analysis (13 Hrs.)
3.1. Determining System Requirements: Introduction; Performing Requirements Determination; Traditional Methods for Determining Requirements; Contemporary Methods for Determining System Requirements; Radical Methods for Determining System Requirements
3.2. Structuring System Process Requirements: Introduction; Process Modeling; Data Flow Diagrams; Modeling Logic with Decision Tables, Decision Trees, and Pseudocodes
3.3. Structuring System Data Requirements: Introduction; Conceptual Data Modeling; Gathering Information for Conceptual Data Modeling; Introduction to E-R Modeling

Unit 4: Design (7 Hrs.)
4.1. Designing Databases: Introduction; Database Design; Relational Database Model; Normalization; Transforming E-R Diagrams Into Relations; Merging Relations; Physical File and Database Design; Designing Fields; Designing Physical Tables
4.2. Designing Forms and Reports: Introduction; Designing Forms and Reports; Formatting Forms and Reports; Assessing Usability
Unit 5: Implementation and Maintenance (4 Hrs.)

Unit 6: Introduction to Object-Oriented Development (6 Hrs.)

Basic Characteristics of Object-Oriented Systems; Object-Oriented System Analysis and Design (OOSAD); Introduction to Unified Modeling Language, Structural and Behavioral Diagrams

Laboratory / Project Work: In the practical session, students will learn to use project management, CASE, and modeling tools. They also prepare a project report that includes at least analysis, design, and implementation phases of system analysis and design. The project can be done in groups with at most four members in each group using any suitable database, programming, and interfacing technologies.

Text Books:

References Books:
2. Jeffrey Whitten and Lonnie Bently, System Analysis and Design Methods, 7th Edition
Cryptography

Course Title: Cryptography
Course No: CSC316
Nature of the Course: Theory + Lab
Semester: V

Course Description: The course introduces the underlying principles and design of cryptosystems. The course covers the basics concepts of cryptography including: traditional ciphers, block ciphers, stream ciphers, public and private key cryptosystems. The course also includes the theory of hash functions, authentication systems, network security protocols and malicious logic.

Course Objectives: The objectives of this course are to familiarize the students with cryptography and its applications. The students will be able to develop basic understanding of cryptographic mechanisms.

Course Contents:
Unit I: Introduction and Classical Ciphers (7 hr)
2. Classical Cryptosystems:
 - Substitution Techniques: Caesar, Monoalphabetic, Playfair, Hill, Polyalphabetic ciphers, One-time pad
 - Transposition Techniques: Rail Fence Cipher
3. Modern Ciphers: Block vs. Stream Ciphers, Symmetric vs. Asymmetric Ciphers

Unit II: Symmetric Ciphers (10 hr)
4. Fiestel Cipher Structure, Substitution Permutation Network (SPN)
5. Data Encryption Standards (DES), Double DES, Triple DES
6. Finite Fields: Groups Rings, Fields, Modular Arithmetic, Euclidean Algorithm, Galois Fields (GF(p) & GF(2^n)), Polynomial Arithmetic
7. International Data Encryption Standard (IDEA)
8. Advanced Encryption Standards (AES) Cipher
9. Modes of Block Cipher Encryptions (Electronic Code Book, Cipher Block Chaining, Cipher Feedback Mode, Output Feedback Mode, Counter Mode)

Unit III: Asymmetric Ciphers (8 hr)
10. Number Theory: Prime Numbers, Fermat’s Theorem, Euler’s Theorem, Primility Testing, Miller-Rabin Algorithm, Extended Euclidean Theorem, Discrete Logarithms
11. Public Key Cryptosystems, Applications of Public Key Cryptosystems
12. Distribution of public key, Distribution of secret key by using public key cryptography, Diffie-Helman Key Exchange, Man-in-the-Middle Attack
13. RSA Algorithm
14. Elgaman Cryptographic System

Unit IV: Cryptographic Hash Functions and Digital Signatures (8 hr)
15. Message Authentication, Message Authentication Functions, Message Authentication Codes
16. Hash Functions, Properties of Hash functions, Applications of Hash Functions
17. Message Digests: MD4 and MD5
4.8. Digital Signatures: Direct Digital Signatures, Arbitrated Digital Signature
4.9. Digital Signature Standard: The DSS Approach, Digital Signature Algorithm
4.10. Digital Signature Standard: The RSA Approach

Unit V: Authentication (3 Hrs)

5.4. Authentication System,
5.5. Password Based Authentication, Dictionary Attacks,
5.6. Challenge Response System,
5.7. Biometric System
5.8. Needham-Schroeder Scheme, Kerberos Protocol

Unit VI: Network Security and Public Key Infrastructure (6 Hrs)

6.1. Overview of Network Security
6.3. PKI trust models, PKIX
6.4. Email Security: Pretty Good Privacy (PGP)
6.5. Secure Socket Layer (SSL) and Transport Layer Security (TLS)
6.6. IP Security (IPSec)
6.7. Firewalls and their types

Unit VI: Malicious Logic (3 Hrs)

7.1. Malicious Logic, Types of Malicious Logic: Virus, Worm, Trojan Horse, Zombies, Denial of Service Attacks,
7.2. Intrusion, Intruders and their types, Intrusion Detection System

Laboratory Works:

The laboratory work includes implementing and simulating the concepts of cryptographic algorithms, hash functions, digital signatures, network security protocols and malicious logic. Students are free to use any of the language and platform as per the skills.

Text Book:

Reference Books:
Course Title: Simulation and Modeling

Course No: CSC317
Nature of the Course: Theory + Lab
Semester: V

Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8
Credit Hrs: 3

Course Description: The syllabus consists of introduction to system, modeling and simulation of different types of systems. It includes the modeling of systems, its validation, verification and analysis of simulation output. It comprises the concept of queuing theory, random number generation as well as study of some simulation languages.

Course Objective: To make students understand the concept of simulation and modeling of real time systems.

Course Contents:

Unit 1: Introduction to Simulation (6 Hours)

Unit 2: Simulation of Continuous and Discrete System (7 Hours)
Continuous System Models, Analog Computer, Analog Methods, Hybrid Simulation, Digital-Analog Simulators, Feedback Systems
Discrete Event Simulation, Representation of time, Simulation Clock and Time Management, Models of Arrival Processes - Poisson Processes, Non-stationary Poisson Processes, Batch Arrivals; Gathering statistics, Probability and Monte Carlo Simulation

Unit 3: Queuing System (6 Hours)
Characteristics and Structure of Basic Queuing System, Models of Queuing System, Queuing notation, Single server and Multiple server Queuing Systems, Measurement of Queuing System Performance, Elementary idea about networks of Queuing with particular emphasis to computer system, Applications of queuing system

Unit 4: Markov Chains (2 Hours)
Features, Process Examples, Applications

Unit 5: Random Numbers (7 Hours)
Random Numbers and its properties, Pseudo Random Numbers, Methods of generation of Random Number, Tests for Randomness - Uniformity and independence, Random Variate Generation

Unit 6: Verification and Validation (4 Hours)
Design of Simulation Models, Verification of Simulation Models, Calibration and Validation of the models, Three-Step Approach for Validation of Simulation Models, Accreditation of Models

Unit 7: Analysis of Simulation Output (4 Hours)
Confidence Intervals and Hypothesis Testing, Estimation Methods, Simulation run statistics, Replication of runs, Elimination of initial bias
Unit 8: Simulation of Computer Systems (9 Hours)
Simulation Tools, Simulation Languages: GPSS, Case Studies of different types of Simulation Models and Construction of sample mathematical models

Laboratory Work:
Practical should include the simulation of some real time systems (continuous and discrete event systems), Queuing Systems, Random Number generations as well as study of Simulation Tools and Language

Text Book:

Reference Books:
1. Geoffrey Gordon: System Simulation
Web Technology

Course Title: Web Technology
Course No: CSC318
Nature of the Course: Theory + Lab
Semester: V

Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8
Credit Hrs: 3

Course Description: This course covers the fundamental concepts of HTML, CSS, JavaScript, XML, and PHP.

Course Objectives: The main objective of this course is to provide basic knowledge of web design using HTML and CSS, client side scripting using JavaScript, handling web data using XML and server side scripting using PHP.

Course Contents:
Unit 1: Introduction (3 Hrs.)
Web Basics: Internet, Intranet, WWW, Static and Dynamic Web Page; Web Clients; Web Servers; Client Server Architecture: Single Tier, Two-Tier, Multi-Tier; HTTP: HTTP Request and Response; URL, Client Side Scripting, Server Side Scripting, Web 1.0, Web 2.0

Unit 2: Hyper Text Markup Language (10 Hrs.)
Introduction to HTML; Elements of HTML Document; HTML Elements and HTML Attributes, Headings, Paragraph, Division, Formatting: b, i, small, sup, sub; Spacing: Pre, Br; Formatting Text Phrases: span, strong, tt; Image element; Anchors; Lists: Ordered and Unordered and Definition; Tables; Frames; Forms: Form Elements, ID attributes, Class Attributes of HTML Elements; Meta Tag, Audio, Video, Canvas, Main, Section, Article, Header, Footer, Aside, Nav, Figure Tags; HTML Events: Window Events, Form Element Events, Keyboard Events, Mouse Events

Unit 3: Cascading Style Sheets (8 Hrs.)
Introduction; Cascading Style Sheets (CSS); CSS Syntax; Inserting CSS: Inline, Internal, External, ID and Class Selectors; Colors; Backgrounds; Borders; Text; Font; List; Table; CSS Box Model; Normal Flow Box Layout: Basic Box Layout, Display Property, Padding, Margin; Positioning: Relative, Float, Absolute; CSS3 Borders, Box Shadows, Text Effects and shadow; Basics of Responsive Web Designs; Media Queries, Introduction to Bootstrap

Unit 4: Client Side Scripting with JavaScript (9 Hrs.)
Structure of JavaScript Program; Variables and Data Types; Statements: Expression, Keyword, Block; Operators; Flow Controls, Looping, Functions; Popup Boxes: Alert, Confirm, Prompt; Objects and properties; Constructors; Arrays; Built-in Objects: Window, String, Number, Boolean, Date, Math, RegExp, Form, DOM; User Defined Objects; Event Handling and Form Validation, Error Handling, Handling Cookies, jQuery Syntax; jQuery Selectors, Events and Effects; Introduction to JSON

Unit 5: AJAX and XML (7 Hrs.)
Basics of AJAX; Introduction to XML and its Application; Syntax Rules for creating XML document; XML Elements; XML Attributes; XML Tree; XML Namespace; XML schema languages: Document Type Definition(DTD), XML Schema Definition (XSD); XSD Simple Types, XSD Attributes; XSD Complex Types; XML Style Sheets (XSLT), XQuery

Unit 6: Server Side Scripting using PHP (8 Hrs.)
PHP Syntax, Variables, Data Types, Strings, Constants, Operators, Control structure, Functions, Array, Creating Class and Objects, PHP Forms, Accessing Form Elements, Form Validation,
Events, Cookies and Sessions, Working with PHP and MySQL, Connecting to Database, Creating, Selecting, Deleting, Updating Records in a table, Inserting Multiple Data, Introduction to CodeIgniter, Laravel, Wordpress etc.

Laboratory Works:
The laboratory work includes creating web pages and applications with using HTML, CSS, JavaScript, XML, and PHP. Students have to prepare a web based application, using above mentioned technologies, as a project work.

Text Books:
1. Web Design with HTML, CSS, JavaScript and jQuery Set, Jon Duckett, *John Wiley & Sons*

Reference Books:
1. HTML5 and CSS3 for the Real World”, Estelle Weyl, Louis Lazaris, Alexis Goldstein, *Sitepoint*
2. HTML & CSS: Design and Build Websites, Jon Duckett, *John Wiley & Sons*
3. Dynamic Web Programming and HTML5, Paul S. Wang, *CRC Press*
4. HTML5 Programming with JavaScript for Dummies, John Paul Mueller
5. JavaScript and jQuery: Interactive Front-end Web Development, Jon Duckett, *Wiley*
8. Web Technologies: HTML, JAVASCRIPT, PHP, JAVA, JSP, ASP.NET, XML and AJAX, Black Book, *Dreamtech Press*
11. www.w3schools.com
Multimedia Computing

Course Title: Multimedia Computing
Full Marks: 60 + 20 + 20
Course No: CSC319
Pass Marks: 24 + 8 + 8
Nature of the Course: Theory + Lab
Credit Hrs: 3
Semester: V

Course Description: This course familiarizes students with the concepts of multimedia computing including sound, image, video, animations, data compression, and multimedia applications.

Course Objectives: The main objective of this course is to provide knowledge of different concepts of multimedia computing and their applications.

Course Contents:
Unit 1: Introduction (5 Hrs.)
Global Structure of Multimedia; Multimedia Application; Medium; Multimedia System and Properties; Characteristics of a Multimedia System; Challenges for Multimedia Systems; Components of a Multimedia System

Unit 2: Sound /Audio System (6 Hrs.)
Concepts of Sound System; Music and Speech; Speech Generation; Speech Analysis; Speech Transmission

Unit 3: Images and Graphics (5 Hrs.)
Digital Image Representation; Image and graphics Format; Image Synthesis, analysis and Transmission

Unit 4: Video and Animation (6 Hrs.)
Video Signal Representation; Computer Video Format; Computer-Based animation; Animation Language; Methods of Controlling Animation; Display of Animation; Transmission of Animation

Unit 5: Data Compression (8 Hrs.)
Storage Space; Coding Requirements; Source, Entropy and Hybrid Coding; Lossy Sequential DCT-based Mode; Expanded Lossy DCT-based Mode; JPEG and MPEG

Unit 7: User Interfaces (5 Hrs.)
Basic Design Issues; Video and Audio at the User Interface; User- friendliness as the Primary Goal

Unit 8: Abstractions for programming (5 Hrs.)
Abstractions Levels; Libraries; System Software Toolkits; Higher Programming Languages; Object –Oriented Approaches

Unit 9: Multimedia Application (5 Hrs.)
Media Preparation and Composition; Media Integration and Communication; Media Entertainment; Telemedicine; E-learning; Digital Video Editing and Production Systems; Video Conferencing; Video-on-demand

Laboratory Work: The laboratory work includes writing programs of different concepts of multimedia computing.
Recommended Books:

Wireless Networking

Course Title: Wireless Networking
Course No: CSC320
Nature of the Course: Theory + Lab
Semester: V

Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8
Credit Hrs: 3

Course Description: This course familiarizes students with different concepts of wireless networking including wireless channels, communication techniques, cellular communications, mobile network, and advanced features.

Objective: The main objective of this course is to provide concepts and principles of wireless networking including protocol stacks and standards with the evolution of latest wireless networks.

Unit 1: Introduction
1.1 History and challenges of wireless communications
1.2 WLAN technologies: Infrared, UHF narrowband, spread spectrum
1.3 Wireless communications standards

Unit 2: Wireless Channel Characterization
2.1 Multipath propagation environment
2.2 LTI channel model
2.3 Channel correlation function
2.4 Large scale path loss
2.5 Small scale multipath fading

Unit 3: Wireless Communication Techniques
3.1 Transmission techniques
 3.1.1 Introduction to bandpass transmission
 3.1.2 Signal space and decision reasons
 3.1.3 Digital modulation
 3.1.4 Power spectral density
3.2 Receiver Techniques
 3.2.1 Introduction to fading dispersive channels
 3.2.2 Channel impairment mitigation techniques
 3.2.3 Diversity
 3.2.4 Channel equalization
3.3 Multiple Access Technologies
 3.3.1 Conflict free multiple access technologies
 3.3.2 Spectral efficiencies

Unit 4: Fundamental of Cellular Communications
4.1 Spectrum reuse and re-farming
4.2 Cell cluster concept
4.3 Co-channel and adjacent channel interference
4.4 Cell site call blocking and delay
4.5 Channel allocation strategies

Unit 5: Mobility Management in Wireless Networks
5.1 Introduction
5.2 Call admission control
5.3 Handoff management
5.4 Location management for cellular and PCS networks
5.5 Traffic calculation

Unit 6: **Overview of Mobile Network and Transport Layer** [8Hrs]
6.1 Mobile IP: IP packet delivery, Agent discovery, tunneling and encapsulation
6.2 IPv6-Network layer in the internet
6.3 Mobile IP session initiation protocol
6.4 Wireless application protocol
6.5 Mobile routing protocols: DSDV, AODV and DSR
6.6 Classical TCP improvements: Mobile TCP, Time out freezing, Selective retransmission

Unit 7: **Advances in Wireless Networking** [6Hrs]
7.1 4G: Features, Challenges and Applications
7.2 Overview of 4G Technologies
 7.2.1 Multicarrier Modulation
 7.2.2 Smart antenna techniques
 7.2.3 Adaptive Modulation
 7.2.4 Cognitive Radio
7.3 Introduction to 5G and its vision
7.4 Introduction to wireless network virtualization
7.5 Concepts of Wireless Sensor Network & RFID
7.6 Introduction to optical communication: Li-Fi
7.7 Introduction to Software Defined Wireless Networks
7.8 Concepts of Open BTS and Open Cellular Networks

Laboratory Works:
1. Implement DSSS, Channel coding, line coding in MATLAB or equiv. tool
2. Analyze performance of WiMAX/WiFi network using NetSim or equiv. tool.
3. Develop QPSK detector and understand the relation between BER and SNR.
4. Implement various pulse shaping filters implemented in wireless communication.
5. Implement wireless routing protocol: DSDV & AODV
6. Create IPv6 based (Ad-hoc & Infrastructure) wireless network environment and evaluate connectivity, delay, latency, throughput etc.
7. Understand Contiki OS and implement IoT/WSN

Recommended Books:
Image Processing

Course Title: Image Processing
Course No: CSC321
Nature of the Course: Theory + Lab
Semester: V

Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8
Credit Hrs: 3

Course Description: This course covers the investigation, creation and manipulation of digital images by computer. The course consists of theoretical material introducing the mathematics of images and imaging. Topics include representation of two-dimensional data, time and frequency domain representations, filtering and enhancement, the Fourier transform, convolution, interpolation. The student will become familiar with Image Enhancement, Image Restoration, Image Compression, Morphological Image Processing, Image Segmentation, Representation and Description, and Object Recognition.

Course Objectives: The objective of this course is to make students able to:
- develop a theoretical foundation of Digital Image Processing concepts.
- provide mathematical foundations for digital manipulation of images; image acquisition; preprocessing; segmentation; Fourier domain processing; and compression.
- gain experience and practical techniques to write programs for digital manipulation of images; image acquisition; preprocessing; segmentation; Fourier domain processing; and compression.

Course Contents:
Unit 1: Introduction (5 Hrs.)
Digital Image, A Simple Image Model, Fundamental steps in Image Processing, Elements of Digital Image Processing systems, Element of visual perception, Sampling and Quantization, Some basic relationships like Neighbors, Connectivity, Distance Measures between pixels

Unit 2: Image Enhancement and Filter in Spatial Domain (8 Hrs.)
Point operations, contrast stretching, clipping and thresholding, digital negative, intensity level slicing, bit plane slicing, Histogram Equalization, Spatial operations: Averaging, median, filtering spatial low pass and high pass, high boost filter, high frequency emphasis filter, Laplacian filter, magnification by replication and interpolation.

Unit 3: Image Enhancement in the Frequency Domain (8 Hrs.)
Introduction to Fourier Transform and the frequency Domain, Computing and Visualizing the 2D DFT, Fast Fourier Transform, Smoothing Frequency Domain Filters, Sharpening Frequency Domain Filters, Other Image Transforms (Hadamard transform, Haar transform and Discrete Cosine transform)

Unit 4: Image Restoration and Compression (8 Hrs.)
Image Restoration: Models for Image degradation and restoration process, Noise Models, Estimation of Noise Parameters, Restoration Filters, Bandrejected Filters, Bandpass Filters.
Image Compression: Image compression models, Pixel coding: run length, bit plane, Predictive and inter-frame coding

Unit 5: Introduction to Morphological Image Processing (2 Hrs.)
Logic Operations involving binary images, Dilation and Erosion, Opening and Closing.

Unit 6: Image Segmentation (8 Hrs.)
Unit 7: Representations, Description and Recognition (6 Hrs.)
Introduction to some descriptors (Chain codes, Signatures, Shape Numbers, Fourier Descriptors),
Patterns and pattern classes, Decision-Theoretic Methods, Overview of Neural Networks in Image
Processing, Overview of pattern recognition.

Laboratory Work: Students are required to develop programs in related topics using MatLab or
suitable programming language.

Text Books:

Reference Books:
Knowledge Management

Course Title: Knowledge Management
Course No: CSC322
Nature of the Course: Theory + Lab
Semester: V

Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8
Credit Hrs: 3

Course Description: This course introduces fundamental concept of knowledge and different issues in managing the knowledge.

Course Objective: This course enables to learn about the Evolution of Knowledge management, be familiar with tools, be exposed to applications, and be familiar with some case studies.

Course Contents:

Unit 1: (9 Hrs.)
5. An Introduction to Knowledge Management, The foundations of knowledge management, Cultural issues, Technology applications organizational concepts and processes, Management aspects, decision support systems.
6. The Evolution of Knowledge management: From Information Management to Knowledge Management, Key Challenges Facing the Evolution of Knowledge Management, Ethics for Knowledge Management.

Unit 2: (9 Hrs.)

Unit 3: (10 Hrs.)
3.1. Telecommunications and Networks in Knowledge Management, Internet Search Engines and Knowledge Management, Information Technology in Support of Knowledge Management
3.2. Knowledge Management and Vocabulary Control, Information Mapping in Information Retrieval, Information Coding in the Internet Environment, Repackaging Information.

Unit 4: (8 Hrs.)
4.1. Components of a Knowledge Strategy - Case Studies (From Library to Knowledge Center, Knowledge Management in the Health Sciences, Knowledge Management in Developing Countries).

Unit 5: (9 Hrs.)
5.1. Advanced topics and case studies in knowledge management - Development of a knowledge management map/plan that is integrated with an organization's strategic and business plan - A case study on Corporate Memories for supporting various aspects in the process life-cycles of an organization

Laboratory Works:
Upon completion of the course, the student should be able to:
• Use the knowledge management tools.
• Develop knowledge management Applications.
• Design and develop enterprise applications.
Text Book:

Reference Books:
Course Title: Society and Ethics in Information Technology
Course No: CSC323
Nature of the Course: Theory + Lab
Full Marks: 60 + 20 + 20
Pass Marks: 24 + 8 + 8
Credit Hrs: 3

Course Description:
This course covers different concepts related with sociology, and social and ethical issues related with the use of Information Technology. This course also covers social context of computing, software issues and new frontiers of computer ethics.

Course Objective:
The basic objective of this course is to provide fundamental knowledge on the concept of sociology to understand social, cultural, economic, political and technical aspects, and knowledge of different social and ethical issues related with Information Technology.

Unit 1: Introduction [4 Hrs.]
Concept and Evolution of Sociology; Applications of Sociology; Emergence of Social and Ethical Problems; Computer Ethics and Computer Ethics Education; Ethics and Professions

Unit 2: Social and cultural change [6 Hrs.]
Process; Theories of Social Change (Evolution, Functional, Conflict); Factors of Social Change (Economics, Technology, Education, Demography); Role of Media and Communication in Social and Cultural Change; Innovation and Diffusion; Resistance of Social Change; Technological Changes and its Consequences

Unit 3: Understanding development [5 Hrs.]
Definition and Approaches of Development; Indicators of Development; Features of Developing Countries; Development Planning; Role of National and International Community and State

Unit 4: Process of transformation [4 Hrs.]
Modernization, Globalization and Migration, E-governance, E-commerce

Unit 5: Ethics and Ethical Analysis [4 Hrs.]
Traditional Definition; Ethical Theories; Functional Definition of Ethics; Ethical Reasoning and Decision Making; Codes of Ethics; Reflections on Computer Ethics; Technology and Values

Unit 6: Intellectual Property Rights and Computer Technology [6 Hrs.]
Definitions; Computer Products and Services; Foundations of Intellectual Property; Ownership; Intellectual Property Crimes; Protection of Ownership Rights; Protecting Computer Software; Transnational Issues and Intellectual Property

Unit 7: Social Context of Computing [4 Hrs.]
Introduction; Digital Divide; Obstacles to Overcome the Digital Divide; ICT in the Workplace; Employee Monitoring; Workplace, Employee, Health, and Productivity

Unit 8: Software Issues [5 Hrs.]
Definitions; Causes of Software Failures; Risk; Consumer Protection; Improving Software Quality; Producer Protection
Unit 9: New Frontiers for Computer Ethics [7 Hrs.]
Artificial Intelligence ad Ethics; Virtualization, Virtual Reality, and Ethics; Cyberspace and Ethics; Cyberbullying

Recommended Books:
4. G. M. Foster, “Traditional Culture & Impact of Technological Change”
Microprocessor Based Design

Course Title: Microprocessor Based Design
Course No: CSC324
Nature of the Course: Theory + Lab
Semester: V

Course Description: This course covers range of issues to be considered in designing a microprocessor-based system. First, the criteria for selecting a microprocessor/microcontroller are discussed, and second, the hardware and software aspects of designing systems are focused.

Course Objective: The course objective is to demonstrate the concept of microprocessor and to be able to design a microprocessor based system to get desired results. It also emphasizes on hardware interfacing of 8051 to develop solutions of real world problems.

Course Contents:
Unit 1: Introduction to Microcontroller (12 Hrs.)

Unit 2: Sensors and Actuators (7 Hrs.)
Sensors, Analog to Digital Conversion, Control Algorithm, Digital to Analog Conversion, Actuator

Unit 3: Bus and Communication Technology (8 Hrs.)
Common Parallel and Serial Bus Systems, Topology, Arbitration, Synchronization, CAN-Protocol, Bluetooth, PCI, ISA, WIFI

Unit 4: Introduction to 8051 Microcontroller and Programming (12 Hrs.)
8051 architecture and pin diagram, Registers, Timers, Counters, Flags, Special Function Registers, Addressing Modes, Data types, Instructions and Programming, Single–bit Operations, Timer and Counter Programming, Interrupts Programming, Serial Communication, Memory Accessing and their Simple Programming Applications

Unit 5: Electromagnetic Interference and Compatibility (6 Hrs.)
Basics of PCB Design, Design Consideration, Impact of EMI, Sources of EMI, Types of Noise, Grounding, Shielding, EMI, and EMC Standard

Laboratory works:
Programming and Application development around 8051, Interfacing to ADC, DAC, and Sensors

Recommended Books:
1. D. V. Hall, Microprocessors and Interfacing - Programming and Hardware, McGraw Hill